Test # 14
Enter eMail-id:

1. Wax : Wane :: Zenith : ?

# Word of the Day

• Weird Hair Tricks That Really Work
• Class 8 - The Judiciary
• Rules to play Quad Biking
• Bodyweight Exercises
• Rules to play Table Tennis

### Basis Algorithms

From Mathematics, a vector space of dimension N can be spanned by N basis vectors. It has been proven that two algorithms alone are sufficient to span the whole pattern space of the cube (and therefore can bring you to any pattern, including solving the cube). Unfortunately, these two sequences are very very long, and you need to combine them in the correct way to arrive at the desired target pattern.

On the other hand, it is obvious that the six basic face movements can solve the cube. This fact is hardly useful because the face movements themselves affect too many pieces each time. Therefore, they cannot help us to achieve meaningful goals.

Notice that corners always move to corners and edges to edges. You can never move a corner to an edge. Therefore, they are very different objects, and should be treated separately. The minimum basis vectors I have chosen are

CM3 moves 3 corners, preserving other corners
CT2 twists 2 corners, preserving other corners
EM3 moves 3 edges, preserving all other pieces
EF2 flips 2 edges, preserving all other pieces

Since the Strategy of 8 Corners settles corners first, corner algorithms can affect edges, but edge algorithms must preserve corners.

These basis algorithms, together with their mirror images and conjugates (see below), are sufficient to solve the cube. Notice that by looking at the cube as corners and edges, you have to handle only two scenarios how to work with corners, and how to work with edges. For each scenario, you have only two things to do move them around, or fliptwist them in place. That is all you need to solve the cube.